WS 2016/17

Symplectic Geometry

Homework 2

Exercise 1. (10 points)

Exercise 8 from Homework 1 (on page 8) in *Lectures on Symplectic Geometry* by A. Cannas da Silva. Also available online at: http://www.mi.uni-koeln.de/~pabiniak/sg.html

Exercise 2. (10 points) Show that for any linear subspaces V_1 , V_2 of a symplectic vector space (V, ω) it holds that

 $(V_1 + V_2)^{\omega} = V_1^{\omega} \cap V_2^{\omega}, \qquad (V_1 \cap V_2)^{\omega} = V_1^{\omega} + V_2^{\omega}.$

Exercise 3. (10 points) Show that any hyperplane W in a 2n dimensional symplectic vector space (V, ω) is coisotropic.

Exercise 4. (10 points) Let $E \subset V$ be a coisotropic subspace. Show that

 $\Gamma_E := \{ (\pi(w), w) \in V_E \times \overline{V} \}$

is a Lagrangian in $V_E \times \overline{V}$. For any Lagrangian L in V it holds that $\Gamma_E \circ L = L_E$, where $\Gamma_E \circ L$ is the composition of Lagrangians (see lecture).

Hand in: Thursday November 3rd in the exercise session in Übungsraum 1, MI